Weiterentwicklung der Magnetresonanztomographie dank Nanodiamanten

MRT(Januar 2016) Eine von der Uni Ulm aus koordinierte Forschergruppe um Professor Martin Plenio will mit Quantentechnologie die Magnetresonanztomographie verbessern. Eine wichtige Rolle spielen dabei hyperpolarisierte, nanometergroße Diamanten. Diese sollen in einem MRT-Scanner ein milliardenfach stärkeres Signal erzeugen. So lassen sich eventuell schon bald Stoffwechselprozesse detailliert verfolgen. Diese kostengünstige Technologie ist für Forschung und Medikamentenentwicklung gleichermaßen interessant.

 

Schon jetzt ermöglicht die Magnetresonanztomographie (MRT) eine erstaunlich genaue Darstellung von inneren Organen und Geweben ohne Strahlenbelastung. Dank Quantentechnologie lassen sich eventuell schon bald Stoffwechselprozesse, die etwa den Erfolg einer Krebstherapie anzeigen, detailliert verfolgen und quantifizieren.

Diese Weiterentwicklung, bei der hyperpolarisierte, nanometergroße Diamanten eine wichtige Rolle spielen, ist für Diagnostik, Forschung und Medikamentenentwicklung gleichermaßen interessant. Im Zuge des EU-Projekts HYPERDIAMOND haben Forscher um die Ulmer Professoren Martin Plenio, Tanja Weil, Fedor Jelezko und Volker Rasche nun rund fünf Millionen Euro für vier Jahre eingeworben – in dem hochselektiven Verfahren waren nur zwei Prozent der Anträge erfolgreich.

Ab Januar will die Gruppe vor allem ein Gerät entwickeln, das die chemisch funktionalisierte Polarisation von Nanodiamanten ermöglicht. Diese sollen in einem MRT-Scanner ein milliardenfach stärkeres Signal erzeugen.

Die Stärke des MRT-Signals wird durch die Polarisation von Kernspins im Körper bestimmt, die wiederum durch hochleistungsfähige Magnete in entsprechenden Scannern erreicht wird. Dank der so genannten Hyperpolarisation – darunter versteht man die geordnete Ausrichtung von Kernspins – lässt sich die Empfindlichkeit der Magnetresonanztomographie noch einmal um das 10.000-fache steigern.

Solche hochleistungsfähigen Verfahren, die schon heute bei der Einschätzung von Tumoren eingesetzt werden, sind allerdings zeitaufwändig, teuer und funktionieren nur bei tiefen Temperaturen. Ein neuer Ansatz aus Ulm will diese Nachteile dank Quantentechnologie umgehen.

Eine wichtige Rolle spielen dabei extrem reine, künstliche Diamanten: In ihren Stickstofffehlstellenzentren kann der Elektronenspin mittels Laserlicht polarisiert werden. Nun wollen die Forscher diese Polarisation mithilfe von Mikrowellenstrahlung auf Kernspins in Diamanten oder in externe Moleküle übertragen, um sie zu hyperpolarisieren. So soll die effiziente Darstellung molekularer Prozesse bei hoher räumlicher Auflösung möglich werden.

Im Physiklabor konnten Professor Fedor Jelezko, Leiter des Instituts für Quantenoptik, und Professor Martin Plenio (Leiter Institut für Theoretische Physik) diese Hyperpolarisation bereits erzeugen und nachweisen. Inzwischen haben die Wissenschaftler ihre Idee zum Patent angemeldet und wollen sie in die Anwendung tragen. Das neue Verfahren zur Hyperpolarisation ist übrigens ein unerwartetes Nebenprodukt des Projekts BioQ, in dem Plenio, Jelezko und Weil quantentechnologische Anwendungen in der Sensorik, Messtechnik und Bildgebung entwickeln – gefördert durch einen Synergy Grant des Europäischen Forschungsrats über 10,3 Millionen Euro.

In naher Zukunft will die interdisziplinäre Forschergruppe aus den Bereichen Quantenphysik, Materialwissenschaften, bioorganische Chemie sowie medizinische Bildgebung zwei Neuheiten im Bereich Hyperpolarisation entwickeln und auf den Markt bringen. Der „Diamond Hyperpolarizer“ soll eine kosten- und zeitsparende Lösung auf Basis von Nanodiamanten bieten: Das teure Kryostat und die supraleitenden Magnete, die aktuell zum Standard gehören, werden durch einen günstigen Diodenlaser und ein Mikrowellenresonator-System ersetzt.
Quelle Text: MEDICA.de; Universitätsklinik Ulm

Quelle Bild: © PhotographyByMK – fotolia